IRF1
data <- read.csv("220425_data.csv", stringsAsFactors = TRUE, header = TRUE)
data %>% filter(Ab == "Irf1" & Target == "Fas" & Group == "CON") %>% shapiro_test(percent.input)
## # A tibble: 1 × 3
## variable statistic p
## <chr> <dbl> <dbl>
## 1 percent.input 0.955 0.747
data %>% filter(Ab == "Irf1" & Target == "Fas" & Group == "MIA") %>% shapiro_test(percent.input)
## # A tibble: 1 × 3
## variable statistic p
## <chr> <dbl> <dbl>
## 1 percent.input 0.913 0.499
data %>% filter(Ab == "Irf1" & Target == "IL6" & Group == "CON") %>% shapiro_test(percent.input)
## # A tibble: 1 × 3
## variable statistic p
## <chr> <dbl> <dbl>
## 1 percent.input 0.992 0.967
data %>% filter(Ab == "Irf1" & Target == "IL6" & Group == "MIA") %>% shapiro_test(percent.input)
## # A tibble: 1 × 3
## variable statistic p
## <chr> <dbl> <dbl>
## 1 percent.input 0.890 0.385
data %>% filter(Ab == "Irf1" & Target == "Fas") %>% t.test(percent.input ~ Group, data = ., var.equal=T)
##
## Two Sample t-test
##
## data: percent.input by Group
## t = 2.4945, df = 6, p-value = 0.04688
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.01029868 1.06970132
## sample estimates:
## mean in group CON mean in group MIA
## 1.2625 0.7225
data %>% filter(Ab == "Irf1" & Target == "IL6") %>% t.test(percent.input ~ Group, data = ., var.equal=T)
##
## Two Sample t-test
##
## data: percent.input by Group
## t = 3.1471, df = 6, p-value = 0.01989
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3392888 2.7107112
## sample estimates:
## mean in group CON mean in group MIA
## 3.5025 1.9775
data %>% filter(Ab == "Irf1" & Target == "Fas") %>%
ggplot(., aes(x = Group, y = percent.input, fill = Group)) + geom_boxplot() + geom_point(size = 2) + scale_fill_manual(values = c("grey", "red")) + theme_cowplot() + labs(subtitle = "Irf1 capture") + ylim(0,2) + theme(legend.position = "none") + ylab("% Input (Fas)")
data %>% filter(Ab == "Irf1" & Target == "IL6") %>%
ggplot(., aes(x = Group, y = percent.input, fill = Group)) + geom_boxplot() + geom_point(size = 2) + scale_fill_manual(values = c("grey", "red")) + theme_cowplot() + labs(subtitle = "Irf1 capture") + ylim(0,5) + theme(legend.position = "none") + ylab("% Input (IL-6)")
Stat2
Stat2 <- data %>% filter(Ab == "Stat2" & Sample != "21-75-3")
# 21-75-3 showed 3x more expression than the remaining 3 animals
Stat2 %>% filter(Target == "IL23" & Group == "CON") %>% shapiro_test(percent.input)
## # A tibble: 1 × 3
## variable statistic p
## <chr> <dbl> <dbl>
## 1 percent.input 0.977 0.882
Stat2 %>% filter(Target == "IL23" & Group == "MIA") %>% shapiro_test(percent.input)
## # A tibble: 1 × 3
## variable statistic p
## <chr> <dbl> <dbl>
## 1 percent.input 0.904 0.398
Stat2 %>% filter(Target == "IL23") %>% t.test(percent.input ~ Group, data = ., var.equal=T)
##
## Two Sample t-test
##
## data: percent.input by Group
## t = 4.7383, df = 5, p-value = 0.005158
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.3450225 1.1633109
## sample estimates:
## mean in group CON mean in group MIA
## 1.2775000 0.5233333
Stat2 %>% filter(Target == "IL23") %>%
ggplot(., aes(x = Group, y = percent.input, fill = Group)) + geom_boxplot() + geom_point(size = 2) + scale_fill_manual(values = c("grey", "red")) + theme_cowplot() + labs(subtitle = "Stat2 capture") + ylim(0,2) + theme(legend.position = "none") + ylab("% Input (IL-23)")