This is an rmarkdown of the ephys data from CON:CON, CON:PLX, MIA:CON, and MIA:PLX mice treated with 10 mg/kg PIC at E9 and PLX from E9-E12. Recordings were performed on D1TdTom- cells in the ventral striatum.
## 'data.frame': 58 obs. of 8 variables:
## $ File : Factor w/ 58 levels "0302_1","0302_3",..: 20 21 22 36 37 38 39 40 41 42 ...
## $ ID : Factor w/ 17 levels "19-118-1","19-53-1",..: 3 3 3 6 7 7 7 8 8 8 ...
## $ Litter: Factor w/ 12 levels "19-118","19-53",..: 3 3 3 5 5 5 5 6 6 6 ...
## $ Group : Factor w/ 4 levels "CON:CON","CON:PLX",..: 1 1 1 1 1 1 1 1 1 1 ...
## $ Cell : chr "3" "5" "6" "2" ...
## $ Type : Factor w/ 1 level "D2R": 1 1 1 1 1 1 1 1 1 1 ...
## $ mFreq : num 2.23 2.13 2.52 1.38 5.02 ...
## $ mAmp : num 17.71 16.44 11.18 9.28 10.75 ...
## data$Group n
## 1 CON:CON 13
## 2 CON:PLX 15
## 3 MIA:CON 14
## 4 MIA:PLX 16
## data$Group data$ID n
## 1 CON:CON 19-59-2 3
## 2 CON:CON 19-64-2 1
## 3 CON:CON 19-64-4 3
## 4 CON:CON 19-65-3 3
## 5 CON:CON 19-65-4 3
## 6 CON:PLX 19-53-1 5
## 7 CON:PLX 19-61-1 4
## 8 CON:PLX 19-61-2 3
## 9 CON:PLX 20-15-1 3
## 10 MIA:CON 19-118-1 4
## 11 MIA:CON 20-39-1 2
## 12 MIA:CON 20-39-2 2
## 13 MIA:CON M128-1 6
## 14 MIA:PLX 19-71-3 4
## 15 MIA:PLX 19-77-1 6
## 16 MIA:PLX 19-77-2 3
## 17 MIA:PLX 20-37-1 3
library(lme4)
library(lmerTest)
data %>% group_by(Group) %>% shapiro_test(mFreq)
## # A tibble: 4 x 4
## Group variable statistic p
## <fct> <chr> <dbl> <dbl>
## 1 CON:CON mFreq 0.931 0.352
## 2 CON:PLX mFreq 0.942 0.411
## 3 MIA:CON mFreq 0.925 0.256
## 4 MIA:PLX mFreq 0.903 0.0904
data %>% group_by(Group) %>% shapiro_test(mAmp)
## # A tibble: 4 x 4
## Group variable statistic p
## <fct> <chr> <dbl> <dbl>
## 1 CON:CON mAmp 0.948 0.575
## 2 CON:PLX mAmp 0.956 0.618
## 3 MIA:CON mAmp 0.977 0.957
## 4 MIA:PLX mAmp 0.932 0.264
bartlett.test(data$mFreq ~ data$Group) # unequal variance
##
## Bartlett test of homogeneity of variances
##
## data: data$mFreq by data$Group
## Bartlett's K-squared = 9.2, df = 3, p-value = 0.03
bartlett.test(data$mAmp ~ data$Group) # equal variance
##
## Bartlett test of homogeneity of variances
##
## data: data$mAmp by data$Group
## Bartlett's K-squared = 0.39, df = 3, p-value = 0.9
lme.fit <- lmer(mFreq~Group+(1|ID),data=data)
summary(lme.fit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: mFreq ~ Group + (1 | ID)
## Data: data
##
## REML criterion at convergence: 143.6
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.124 -0.686 -0.112 0.541 2.628
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 0.0679 0.261
## Residual 0.6394 0.800
## Number of obs: 58, groups: ID, 17
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 2.8602 0.2528 13.9106 11.31 2.1e-08 ***
## GroupCON:PLX 0.0765 0.3523 10.8478 0.22 0.832
## GroupMIA:CON -0.9481 0.3597 10.6555 -2.64 0.024 *
## GroupMIA:PLX -0.0483 0.3492 10.2433 -0.14 0.893
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GCON:P GMIA:C
## GropCON:PLX -0.718
## GropMIA:CON -0.703 0.504
## GropMIA:PLX -0.724 0.520 0.509
summary(glht(lme.fit, linfct = mcp(Group = c("CON:PLX - CON:CON == 0", "MIA:CON - CON:CON == 0", "MIA:PLX - CON:CON == 0", "MIA:PLX - MIA:CON == 0")), test = adjusted("BH")))
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: lmer(formula = mFreq ~ Group + (1 | ID), data = data)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## CON:PLX - CON:CON == 0 0.0765 0.3523 0.22 0.995
## MIA:CON - CON:CON == 0 -0.9481 0.3597 -2.64 0.030 *
## MIA:PLX - CON:CON == 0 -0.0483 0.3492 -0.14 0.999
## MIA:PLX - MIA:CON == 0 0.8997 0.3514 2.56 0.037 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
lme.fit <- lmer(mAmp~Group+(1|ID),data=data)
summary(lme.fit)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: mAmp ~ Group + (1 | ID)
## Data: data
##
## REML criterion at convergence: 260.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.6599 -0.5992 0.0263 0.6108 1.9203
##
## Random effects:
## Groups Name Variance Std.Dev.
## ID (Intercept) 1.66 1.29
## Residual 5.05 2.25
## Number of obs: 58, groups: ID, 17
##
## Fixed effects:
## Estimate Std. Error df t value Pr(>|t|)
## (Intercept) 12.9161 0.8619 14.4803 14.99 3.2e-10 ***
## GroupCON:PLX 1.4615 1.2259 12.2207 1.19 0.26
## GroupMIA:CON -0.0175 1.2498 12.6283 -0.01 0.99
## GroupMIA:PLX 0.3792 1.2200 11.9081 0.31 0.76
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
## (Intr) GCON:P GMIA:C
## GropCON:PLX -0.703
## GropMIA:CON -0.690 0.485
## GropMIA:PLX -0.706 0.497 0.487
summary(glht(lme.fit, linfct = mcp(Group = c("CON:PLX - CON:CON == 0", "MIA:CON - CON:CON == 0", "MIA:PLX - CON:CON == 0", "MIA:PLX - MIA:CON == 0")), test = adjusted("BH")))
##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: User-defined Contrasts
##
##
## Fit: lmer(formula = mAmp ~ Group + (1 | ID), data = data)
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## CON:PLX - CON:CON == 0 1.4615 1.2259 1.19 0.56
## MIA:CON - CON:CON == 0 -0.0175 1.2498 -0.01 1.00
## MIA:PLX - CON:CON == 0 0.3792 1.2200 0.31 0.98
## MIA:PLX - MIA:CON == 0 0.3967 1.2509 0.32 0.98
## (Adjusted p values reported -- single-step method)
setwd("~/Data/Ephys/Ephys/210905_Analysis")
cumlFreq <- read.csv("210816_rescue_mEPSC_cumprob.csv", stringsAsFactors = T)
cumlFreq_v1 <- filter(cumlFreq, Group %in% c("CON.CON", "MIA.CON"))
cumlFreq<- filter(cumlFreq, IEI <= 4)
a=ggplot(cumlFreq, aes(x=IEI, y=probability, group=Group, color=Group)) + scale_color_manual(values=c("black","turquoise3", "red", "purple3")) + geom_smooth(method = lm, formula = y ~ splines::bs(x, 10)) + labs(y="cumulative probability", subtitle="D2R Frequency") + xlim(0,2) + theme_cowplot()
b=ggplot(cumlFreq_v1, aes(x=IEI, y=probability, group=Group, color=Group)) + scale_color_manual(values=c("black", "red")) + geom_smooth(method = lm, formula = y ~ splines::bs(x, 10)) + labs(y="cumulative probability", subtitle="D2R Frequency") + xlim(0,2) + theme_cowplot()
plot_grid(a,b)
ks.test(cumlFreq[cumlFreq$Group=="CON.CON",]$probability,cumlFreq[cumlFreq$Group=="CON.PLX",]$probability)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: cumlFreq[cumlFreq$Group == "CON.CON", ]$probability and cumlFreq[cumlFreq$Group == "CON.PLX", ]$probability
## D = 0.12, p-value = 0.9
## alternative hypothesis: two-sided
ks.test(cumlFreq[cumlFreq$Group=="CON.CON",]$probability,cumlFreq[cumlFreq$Group=="MIA.CON",]$probability)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: cumlFreq[cumlFreq$Group == "CON.CON", ]$probability and cumlFreq[cumlFreq$Group == "MIA.CON", ]$probability
## D = 0.32, p-value = 0.03
## alternative hypothesis: two-sided
ks.test(cumlFreq[cumlFreq$Group=="CON.CON",]$probability,cumlFreq[cumlFreq$Group=="MIA.PLX",]$probability)
##
## Two-sample Kolmogorov-Smirnov test
##
## data: cumlFreq[cumlFreq$Group == "CON.CON", ]$probability and cumlFreq[cumlFreq$Group == "MIA.PLX", ]$probability
## D = 0.15, p-value = 0.8
## alternative hypothesis: two-sided
sessionInfo()
## R version 4.0.3 (2020-10-10)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur 10.16
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] lmerTest_3.1-3 lme4_1.1-27.1 Matrix_1.3-4 multcomp_1.4-17
## [5] TH.data_1.0-10 MASS_7.3-54 survival_3.2-11 mvtnorm_1.1-2
## [9] rstatix_0.7.0 cowplot_1.1.1 forcats_0.5.1 stringr_1.4.0
## [13] dplyr_1.0.7 purrr_0.3.4 readr_1.4.0 tidyr_1.1.3
## [17] tibble_3.1.2 ggplot2_3.3.5 tidyverse_1.3.1
##
## loaded via a namespace (and not attached):
## [1] nlme_3.1-152 fs_1.5.0 lubridate_1.7.10
## [4] httr_1.4.2 numDeriv_2016.8-1.1 tools_4.0.3
## [7] backports_1.2.1 bslib_0.2.5.1 utf8_1.2.1
## [10] R6_2.5.0 mgcv_1.8-36 DBI_1.1.1
## [13] colorspace_2.0-2 withr_2.4.2 tidyselect_1.1.1
## [16] curl_4.3.2 compiler_4.0.3 cli_3.0.0
## [19] rvest_1.0.0 xml2_1.3.2 sandwich_3.0-1
## [22] labeling_0.4.2 sass_0.4.0 scales_1.1.1
## [25] digest_0.6.27 foreign_0.8-81 minqa_1.2.4
## [28] rmarkdown_2.9 rio_0.5.27 pkgconfig_2.0.3
## [31] htmltools_0.5.1.1 dbplyr_2.1.1 highr_0.9
## [34] rlang_0.4.11 readxl_1.3.1 rstudioapi_0.13
## [37] jquerylib_0.1.4 generics_0.1.0 farver_2.1.0
## [40] zoo_1.8-9 jsonlite_1.7.2 zip_2.2.0
## [43] car_3.0-11 magrittr_2.0.1 Rcpp_1.0.7
## [46] munsell_0.5.0 fansi_0.5.0 abind_1.4-5
## [49] lifecycle_1.0.0 stringi_1.6.2 yaml_2.2.1
## [52] carData_3.0-4 grid_4.0.3 crayon_1.4.1
## [55] lattice_0.20-44 haven_2.4.1 splines_4.0.3
## [58] hms_1.1.0 knitr_1.33 pillar_1.6.1
## [61] boot_1.3-28 codetools_0.2-18 reprex_2.0.0
## [64] glue_1.4.2 evaluate_0.14 data.table_1.14.0
## [67] modelr_0.1.8 vctrs_0.3.8 nloptr_1.2.2.2
## [70] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1
## [73] xfun_0.24 openxlsx_4.2.4 broom_0.7.8
## [76] ellipsis_0.3.2