Protein for IL-1b, IL6, and TNFa of microglia, astrocytes and uncaptured cells from frontal cortex and striatum.

Data analysis of protein expression of for IL-1b, IL-6 and TNFa after treatment 4500 EU/g lipopolysaccharide (LPS) for 18 hours. pg/mL of protein was normalized with total protein.

Samples

dat <- read.csv("210209_MSD_v2.csv", header = TRUE, stringsAsFactors = TRUE)
# remove id 20-38 & 20-34 because all data points are below standard

Sample Size

dat %>% filter((analyte == "IL-6")) %>% filter(cell == "astrocyte") %>% group_by(cell, group, region) %>% summarise(n = n())
## `summarise()` has grouped output by 'cell', 'group'. You can override using the `.groups` argument.
## # A tibble: 8 x 4
## # Groups:   cell, group [4]
##   cell      group   region     n
##   <fct>     <fct>   <fct>  <int>
## 1 astrocyte CON:CON FC         6
## 2 astrocyte CON:CON Str        6
## 3 astrocyte CON:PLX FC         4
## 4 astrocyte CON:PLX Str        5
## 5 astrocyte MIA:CON FC         6
## 6 astrocyte MIA:CON Str        6
## 7 astrocyte MIA:PLX FC         5
## 8 astrocyte MIA:PLX Str        5
dat %>% filter((analyte == "IL-6")) %>% filter(cell == "microglia") %>% group_by(cell, group, region) %>% summarise(n = n())
## `summarise()` has grouped output by 'cell', 'group'. You can override using the `.groups` argument.
## # A tibble: 8 x 4
## # Groups:   cell, group [4]
##   cell      group   region     n
##   <fct>     <fct>   <fct>  <int>
## 1 microglia CON:CON FC         6
## 2 microglia CON:CON Str        6
## 3 microglia CON:PLX FC         5
## 4 microglia CON:PLX Str        5
## 5 microglia MIA:CON FC         6
## 6 microglia MIA:CON Str        6
## 7 microglia MIA:PLX FC         5
## 8 microglia MIA:PLX Str        5
dat %>% filter((analyte == "IL-6")) %>% filter(cell == "negative") %>% group_by(cell, group, region) %>% summarise(n = n())
## `summarise()` has grouped output by 'cell', 'group'. You can override using the `.groups` argument.
## # A tibble: 8 x 4
## # Groups:   cell, group [4]
##   cell     group   region     n
##   <fct>    <fct>   <fct>  <int>
## 1 negative CON:CON FC         6
## 2 negative CON:CON Str        6
## 3 negative CON:PLX FC         5
## 4 negative CON:PLX Str        5
## 5 negative MIA:CON FC         6
## 6 negative MIA:CON Str        6
## 7 negative MIA:PLX FC         5
## 8 negative MIA:PLX Str        5
dat %>% filter((analyte == "IL-1b")) %>% filter(cell == "microglia") %>% group_by(cell, group, region) %>% summarise(n = n())
## `summarise()` has grouped output by 'cell', 'group'. You can override using the `.groups` argument.
## # A tibble: 8 x 4
## # Groups:   cell, group [4]
##   cell      group   region     n
##   <fct>     <fct>   <fct>  <int>
## 1 microglia CON:CON FC         6
## 2 microglia CON:CON Str        6
## 3 microglia CON:PLX FC         5
## 4 microglia CON:PLX Str        5
## 5 microglia MIA:CON FC         6
## 6 microglia MIA:CON Str        6
## 7 microglia MIA:PLX FC         4
## 8 microglia MIA:PLX Str        5
dat %>% filter((analyte == "TNFa")) %>% filter(cell == "microglia") %>% group_by(cell, group, region) %>% summarise(n = n())
## `summarise()` has grouped output by 'cell', 'group'. You can override using the `.groups` argument.
## # A tibble: 8 x 4
## # Groups:   cell, group [4]
##   cell      group   region     n
##   <fct>     <fct>   <fct>  <int>
## 1 microglia CON:CON FC         5
## 2 microglia CON:CON Str        5
## 3 microglia CON:PLX FC         4
## 4 microglia CON:PLX Str        5
## 5 microglia MIA:CON FC         6
## 6 microglia MIA:CON Str        6
## 7 microglia MIA:PLX FC         4
## 8 microglia MIA:PLX Str        4
dat %>% filter(analyte == "IL-6") %>% 
  ggplot(.,aes(x=region, y=norm.tot, fill = group)) + geom_boxplot() + facet_wrap(~ cell) + scale_fill_manual(values = c("grey", "turquoise3", "red", "mediumpurple3")) + geom_point(position = position_dodge(width = 0.75)) + ylab("IL-6 pg/mL")

dat %>% filter(analyte == "IL-1b") %>% 
  ggplot(.,aes(x=region, y=log2(norm.tot), fill = group)) + geom_boxplot() + facet_wrap(~ cell) + scale_fill_manual(values = c("grey", "turquoise3", "red", "mediumpurple3")) + geom_point(position = position_dodge(width = 0.75)) + ylab("IL-1b pg/mL")

dat %>% filter(analyte == "TNFa") %>% 
  ggplot(.,aes(x=region, y=norm.tot, fill = group)) + geom_boxplot() + facet_wrap(~ cell) + scale_fill_manual(values = c("grey", "turquoise3", "red", "mediumpurple3")) + geom_point(position = position_dodge(width = 0.75)) + ylab("TNFa pg/mL")

2-way ANOVA (type 2)

Microglia

TNFa

TNFa.MG <- dat %>% filter(analyte=="TNFa" & cell=="microglia")

TNFa.MG %>% group_by(group, region) %>% shapiro_test(norm.tot)
## # A tibble: 8 x 5
##   group   region variable statistic     p
##   <fct>   <fct>  <chr>        <dbl> <dbl>
## 1 CON:CON FC     norm.tot     0.883 0.324
## 2 CON:CON Str    norm.tot     0.863 0.237
## 3 CON:PLX FC     norm.tot     0.937 0.634
## 4 CON:PLX Str    norm.tot     0.961 0.818
## 5 MIA:CON FC     norm.tot     0.962 0.838
## 6 MIA:CON Str    norm.tot     0.907 0.414
## 7 MIA:PLX FC     norm.tot     0.890 0.385
## 8 MIA:PLX Str    norm.tot     0.982 0.914
TNFa.MG %>% levene_test(norm.tot ~ group*region)
## # A tibble: 1 x 4
##     df1   df2 statistic      p
##   <int> <int>     <dbl>  <dbl>
## 1     7    31      2.09 0.0744
aov.out<-lm(norm.tot ~ group + region, data = TNFa.MG)
Anova(aov.out)
## Anova Table (Type II tests)
## 
## Response: norm.tot
##            Sum Sq Df F value    Pr(>F)    
## group     1809.58  3  9.9808 7.281e-05 ***
## region     142.89  1  2.3643    0.1334    
## Residuals 2054.81 34                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glht(aov.out, linfct = mcp(group = "Tukey"), test = adjusted("BH")))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lm(formula = norm.tot ~ group + region, data = TNFa.MG)
## 
## Linear Hypotheses:
##                        Estimate Std. Error t value Pr(>|t|)    
## CON:PLX - CON:CON == 0    4.399      3.575   1.231  0.61163    
## MIA:CON - CON:CON == 0   -9.732      3.329  -2.924  0.02991 *  
## MIA:PLX - CON:CON == 0    7.940      3.688   2.153  0.15674    
## MIA:CON - CON:PLX == 0  -14.130      3.431  -4.119  0.00125 ** 
## MIA:PLX - CON:PLX == 0    3.541      3.780   0.937  0.78491    
## MIA:PLX - MIA:CON == 0   17.672      3.548   4.980  < 0.001 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

IL6

IL6.MG <- dat %>% filter(analyte=="IL-6" & cell=="microglia")

IL6.MG %>% group_by(group, region) %>% shapiro_test(norm.tot)
## # A tibble: 8 x 5
##   group   region variable statistic     p
##   <fct>   <fct>  <chr>        <dbl> <dbl>
## 1 CON:CON FC     norm.tot     0.927 0.555
## 2 CON:CON Str    norm.tot     0.910 0.434
## 3 CON:PLX FC     norm.tot     0.980 0.936
## 4 CON:PLX Str    norm.tot     0.979 0.927
## 5 MIA:CON FC     norm.tot     0.853 0.167
## 6 MIA:CON Str    norm.tot     0.841 0.133
## 7 MIA:PLX FC     norm.tot     0.819 0.115
## 8 MIA:PLX Str    norm.tot     0.948 0.723
IL6.MG %>% levene_test(norm.tot ~ group*region)
## # A tibble: 1 x 4
##     df1   df2 statistic     p
##   <int> <int>     <dbl> <dbl>
## 1     7    36     0.469 0.850
aov.out<-lm(norm.tot ~ group + region, data = IL6.MG)
Anova(aov.out)
## Anova Table (Type II tests)
## 
## Response: norm.tot
##           Sum Sq Df F value  Pr(>F)  
## group     152.15  3  3.0273 0.04082 *
## region      0.00  1  0.0000 0.99854  
## Residuals 653.38 39                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glht(aov.out, linfct = mcp(group = "Tukey"), test = adjusted("BH")))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lm(formula = norm.tot ~ group + region, data = IL6.MG)
## 
## Linear Hypotheses:
##                        Estimate Std. Error t value Pr(>|t|)  
## CON:PLX - CON:CON == 0   0.2493     1.7526   0.142   0.9990  
## MIA:CON - CON:CON == 0   0.7217     1.6710   0.432   0.9726  
## MIA:PLX - CON:CON == 0   4.7183     1.7526   2.692   0.0488 *
## MIA:CON - CON:PLX == 0   0.4723     1.7526   0.270   0.9930  
## MIA:PLX - CON:PLX == 0   4.4690     1.8305   2.441   0.0860 .
## MIA:PLX - MIA:CON == 0   3.9967     1.7526   2.280   0.1201  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

IL1b

IL1b.MG <- dat %>% filter(analyte=="IL-1b" & cell=="microglia")

IL1b.MG %>% group_by(group, region) %>% shapiro_test(norm.tot)
## # A tibble: 8 x 5
##   group   region variable statistic     p
##   <fct>   <fct>  <chr>        <dbl> <dbl>
## 1 CON:CON FC     norm.tot     0.923 0.525
## 2 CON:CON Str    norm.tot     0.962 0.835
## 3 CON:PLX FC     norm.tot     0.894 0.375
## 4 CON:PLX Str    norm.tot     0.952 0.749
## 5 MIA:CON FC     norm.tot     0.857 0.178
## 6 MIA:CON Str    norm.tot     0.862 0.197
## 7 MIA:PLX FC     norm.tot     0.882 0.346
## 8 MIA:PLX Str    norm.tot     0.869 0.264
IL1b.MG %>% levene_test(norm.tot ~ group*region)
## # A tibble: 1 x 4
##     df1   df2 statistic     p
##   <int> <int>     <dbl> <dbl>
## 1     7    35      1.81 0.116
aov.out<-lm(norm.tot ~ group + region, data = IL1b.MG)
Anova(aov.out)
## Anova Table (Type II tests)
## 
## Response: norm.tot
##            Sum Sq Df F value Pr(>F)
## group      24.679  3  1.6471 0.1947
## region     12.668  1  2.5363 0.1195
## Residuals 189.792 38
summary(glht(aov.out, linfct = mcp(group = "Tukey"), test = adjusted("BH")))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: lm(formula = norm.tot ~ group + region, data = IL1b.MG)
## 
## Linear Hypotheses:
##                        Estimate Std. Error t value Pr(>|t|)
## CON:PLX - CON:CON == 0  0.79117    0.95690   0.827    0.841
## MIA:CON - CON:CON == 0 -1.28583    0.91237  -1.409    0.501
## MIA:PLX - CON:CON == 0 -0.03656    0.98620  -0.037    1.000
## MIA:CON - CON:PLX == 0 -2.07700    0.95690  -2.171    0.150
## MIA:PLX - CON:PLX == 0 -0.82773    1.02754  -0.806    0.851
## MIA:PLX - MIA:CON == 0  1.24927    0.98620   1.267    0.589
## (Adjusted p values reported -- single-step method)

Astrocyte

IL6

IL6.A <- dat %>% filter(analyte=="IL-6" & cell=="astrocyte")
IL6.A %>% group_by(group, region) %>% shapiro_test(norm.tot)
## # A tibble: 8 x 5
##   group   region variable statistic     p
##   <fct>   <fct>  <chr>        <dbl> <dbl>
## 1 CON:CON FC     norm.tot     0.857 0.179
## 2 CON:CON Str    norm.tot     0.870 0.225
## 3 CON:PLX FC     norm.tot     0.841 0.197
## 4 CON:PLX Str    norm.tot     0.956 0.781
## 5 MIA:CON FC     norm.tot     0.880 0.271
## 6 MIA:CON Str    norm.tot     0.885 0.291
## 7 MIA:PLX FC     norm.tot     0.935 0.631
## 8 MIA:PLX Str    norm.tot     0.889 0.355
IL6.A %>% levene_test(norm.tot ~ group*region)
## # A tibble: 1 x 4
##     df1   df2 statistic     p
##   <int> <int>     <dbl> <dbl>
## 1     7    35      1.24 0.309
aov.out<-lm(norm.tot ~ group + region, data = IL6.A)
Anova(aov.out)
## Anova Table (Type II tests)
## 
## Response: norm.tot
##           Sum Sq Df F value  Pr(>F)  
## group     21.882  3  2.9223 0.04624 *
## region     0.070  1  0.0280 0.86809  
## Residuals 94.847 38                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glht(aov.out, linfct = mcp(group = "Dunnett"), test = adjusted("BH")))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Dunnett Contrasts
## 
## 
## Fit: lm(formula = norm.tot ~ group + region, data = IL6.A)
## 
## Linear Hypotheses:
##                        Estimate Std. Error t value Pr(>|t|)  
## CON:PLX - CON:CON == 0   0.2728     0.6972   0.391   0.9629  
## MIA:CON - CON:CON == 0   1.7800     0.6450   2.760   0.0243 *
## MIA:PLX - CON:CON == 0   0.9453     0.6765   1.397   0.3814  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Negative

IL6

IL6.N <- dat %>% filter(analyte=="IL-6" & cell=="negative")

IL6.N %>% group_by(region, group) %>% shapiro_test(norm.tot)
## # A tibble: 8 x 5
##   group   region variable statistic      p
##   <fct>   <fct>  <chr>        <dbl>  <dbl>
## 1 CON:CON FC     norm.tot     0.803 0.0630
## 2 CON:PLX FC     norm.tot     0.747 0.0277
## 3 MIA:CON FC     norm.tot     0.787 0.0445
## 4 MIA:PLX FC     norm.tot     0.934 0.623 
## 5 CON:CON Str    norm.tot     0.810 0.0724
## 6 CON:PLX Str    norm.tot     0.786 0.0620
## 7 MIA:CON Str    norm.tot     0.827 0.102 
## 8 MIA:PLX Str    norm.tot     0.765 0.0410
IL6.N %>% levene_test(norm.tot ~ group*region)
## # A tibble: 1 x 4
##     df1   df2 statistic     p
##   <int> <int>     <dbl> <dbl>
## 1     7    36      1.37 0.247
aov.out<-lm(norm.tot ~ group + region, data = IL6.N)
Anova(aov.out)
## Anova Table (Type II tests)
## 
## Response: norm.tot
##            Sum Sq Df F value Pr(>F)  
## group      474.79  3  2.7079 0.0583 .
## region       4.16  1  0.0712 0.7910  
## Residuals 2279.40 39                 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(glht(aov.out, linfct = mcp(group = "Dunnett"), test = adjusted("BH")))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Dunnett Contrasts
## 
## 
## Fit: lm(formula = norm.tot ~ group + region, data = IL6.N)
## 
## Linear Hypotheses:
##                        Estimate Std. Error t value Pr(>|t|)  
## CON:PLX - CON:CON == 0    1.082      3.273   0.331    0.977  
## MIA:CON - CON:CON == 0    8.198      3.121   2.627    0.033 *
## MIA:PLX - CON:CON == 0    4.181      3.273   1.277    0.451  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

Reproducibility info

## [1] "2021-11-08 08:53:57 EST"
## ─ Session info ───────────────────────────────────────────────────────────────
##  setting  value                       
##  version  R version 4.0.3 (2020-10-10)
##  os       macOS Big Sur 10.16         
##  system   x86_64, darwin17.0          
##  ui       X11                         
##  language (EN)                        
##  collate  en_US.UTF-8                 
##  ctype    en_US.UTF-8                 
##  tz       America/New_York            
##  date     2021-11-08                  
## 
## ─ Packages ───────────────────────────────────────────────────────────────────
##  package     * version    date       lib source        
##  abind         1.4-5      2016-07-21 [1] CRAN (R 4.0.2)
##  assertthat    0.2.1      2019-03-21 [1] CRAN (R 4.0.2)
##  backports     1.2.1      2020-12-09 [1] CRAN (R 4.0.2)
##  boot          1.3-28     2021-05-03 [1] CRAN (R 4.0.2)
##  broom         0.7.8      2021-06-24 [1] CRAN (R 4.0.2)
##  bslib         0.2.5.1    2021-05-18 [1] CRAN (R 4.0.2)
##  cachem        1.0.5      2021-05-15 [1] CRAN (R 4.0.2)
##  callr         3.7.0      2021-04-20 [1] CRAN (R 4.0.2)
##  car         * 3.0-11     2021-06-27 [1] CRAN (R 4.0.3)
##  carData     * 3.0-4      2020-05-22 [1] CRAN (R 4.0.2)
##  cellranger    1.1.0      2016-07-27 [1] CRAN (R 4.0.2)
##  cli           3.0.0      2021-06-30 [1] CRAN (R 4.0.2)
##  codetools     0.2-18     2020-11-04 [1] CRAN (R 4.0.2)
##  colorspace    2.0-2      2021-06-24 [1] CRAN (R 4.0.2)
##  cowplot     * 1.1.1      2020-12-30 [1] CRAN (R 4.0.2)
##  crayon        1.4.1      2021-02-08 [1] CRAN (R 4.0.2)
##  curl          4.3.2      2021-06-23 [1] CRAN (R 4.0.2)
##  data.table    1.14.0     2021-02-21 [1] CRAN (R 4.0.3)
##  DBI           1.1.1      2021-01-15 [1] CRAN (R 4.0.2)
##  dbplyr        2.1.1      2021-04-06 [1] CRAN (R 4.0.2)
##  desc          1.3.0      2021-03-05 [1] CRAN (R 4.0.2)
##  devtools      2.4.2      2021-06-07 [1] CRAN (R 4.0.2)
##  digest        0.6.27     2020-10-24 [1] CRAN (R 4.0.2)
##  dplyr       * 1.0.7      2021-06-18 [1] CRAN (R 4.0.2)
##  ellipsis      0.3.2      2021-04-29 [1] CRAN (R 4.0.2)
##  evaluate      0.14       2019-05-28 [1] CRAN (R 4.0.1)
##  fansi         0.5.0      2021-05-25 [1] CRAN (R 4.0.3)
##  farver        2.1.0      2021-02-28 [1] CRAN (R 4.0.2)
##  fastmap       1.1.0      2021-01-25 [1] CRAN (R 4.0.2)
##  forcats     * 0.5.1      2021-01-27 [1] CRAN (R 4.0.3)
##  foreign       0.8-81     2020-12-22 [1] CRAN (R 4.0.2)
##  fs            1.5.0      2020-07-31 [1] CRAN (R 4.0.2)
##  generics      0.1.0      2020-10-31 [1] CRAN (R 4.0.2)
##  ggplot2     * 3.3.5      2021-06-25 [1] CRAN (R 4.0.2)
##  ggpubr      * 0.4.0      2020-06-27 [1] CRAN (R 4.0.2)
##  ggsignif      0.6.2      2021-06-14 [1] CRAN (R 4.0.2)
##  glue          1.4.2      2020-08-27 [1] CRAN (R 4.0.2)
##  gtable        0.3.0      2019-03-25 [1] CRAN (R 4.0.2)
##  haven         2.4.1      2021-04-23 [1] CRAN (R 4.0.2)
##  highr         0.9        2021-04-16 [1] CRAN (R 4.0.2)
##  hms           1.1.0      2021-05-17 [1] CRAN (R 4.0.2)
##  htmltools     0.5.1.1    2021-01-22 [1] CRAN (R 4.0.2)
##  httr          1.4.2      2020-07-20 [1] CRAN (R 4.0.2)
##  jquerylib     0.1.4      2021-04-26 [1] CRAN (R 4.0.3)
##  jsonlite      1.7.2      2020-12-09 [1] CRAN (R 4.0.2)
##  knitr         1.33       2021-04-24 [1] CRAN (R 4.0.2)
##  labeling      0.4.2      2020-10-20 [1] CRAN (R 4.0.2)
##  lattice       0.20-44    2021-05-02 [1] CRAN (R 4.0.2)
##  lifecycle     1.0.0      2021-02-15 [1] CRAN (R 4.0.2)
##  lme4        * 1.1-27.1   2021-06-22 [1] CRAN (R 4.0.2)
##  lmerTest    * 3.1-3      2020-10-23 [1] CRAN (R 4.0.2)
##  lubridate     1.7.10     2021-02-26 [1] CRAN (R 4.0.2)
##  magrittr      2.0.1      2020-11-17 [1] CRAN (R 4.0.2)
##  MASS        * 7.3-54     2021-05-03 [1] CRAN (R 4.0.2)
##  Matrix      * 1.3-4      2021-06-01 [1] CRAN (R 4.0.2)
##  memoise       2.0.0      2021-01-26 [1] CRAN (R 4.0.2)
##  minqa         1.2.4      2014-10-09 [1] CRAN (R 4.0.2)
##  modelr        0.1.8      2020-05-19 [1] CRAN (R 4.0.2)
##  multcomp    * 1.4-17     2021-04-29 [1] CRAN (R 4.0.2)
##  munsell       0.5.0      2018-06-12 [1] CRAN (R 4.0.2)
##  mvtnorm     * 1.1-2      2021-06-07 [1] CRAN (R 4.0.2)
##  nlme          3.1-152    2021-02-04 [1] CRAN (R 4.0.2)
##  nloptr        1.2.2.2    2020-07-02 [1] CRAN (R 4.0.2)
##  numDeriv      2016.8-1.1 2019-06-06 [1] CRAN (R 4.0.2)
##  openxlsx      4.2.4      2021-06-16 [1] CRAN (R 4.0.2)
##  pillar        1.6.1      2021-05-16 [1] CRAN (R 4.0.2)
##  pkgbuild      1.2.0      2020-12-15 [1] CRAN (R 4.0.3)
##  pkgconfig     2.0.3      2019-09-22 [1] CRAN (R 4.0.2)
##  pkgload       1.2.1      2021-04-06 [1] CRAN (R 4.0.2)
##  prettyunits   1.1.1      2020-01-24 [1] CRAN (R 4.0.2)
##  processx      3.5.2      2021-04-30 [1] CRAN (R 4.0.2)
##  ps            1.6.0      2021-02-28 [1] CRAN (R 4.0.2)
##  purrr       * 0.3.4      2020-04-17 [1] CRAN (R 4.0.2)
##  R6            2.5.0      2020-10-28 [1] CRAN (R 4.0.2)
##  Rcpp          1.0.7      2021-07-07 [1] CRAN (R 4.0.3)
##  readr       * 1.4.0      2020-10-05 [1] CRAN (R 4.0.2)
##  readxl        1.3.1      2019-03-13 [1] CRAN (R 4.0.2)
##  remotes       2.4.0      2021-06-02 [1] CRAN (R 4.0.2)
##  reprex        2.0.0      2021-04-02 [1] CRAN (R 4.0.2)
##  rio           0.5.27     2021-06-21 [1] CRAN (R 4.0.2)
##  rlang         0.4.11     2021-04-30 [1] CRAN (R 4.0.2)
##  rmarkdown     2.9        2021-06-15 [1] CRAN (R 4.0.2)
##  rprojroot     2.0.2      2020-11-15 [1] CRAN (R 4.0.2)
##  rstatix     * 0.7.0      2021-02-13 [1] CRAN (R 4.0.2)
##  rstudioapi    0.13       2020-11-12 [1] CRAN (R 4.0.2)
##  rvest         1.0.0      2021-03-09 [1] CRAN (R 4.0.3)
##  sandwich      3.0-1      2021-05-18 [1] CRAN (R 4.0.2)
##  sass          0.4.0      2021-05-12 [1] CRAN (R 4.0.2)
##  scales        1.1.1      2020-05-11 [1] CRAN (R 4.0.2)
##  sessioninfo   1.1.1      2018-11-05 [1] CRAN (R 4.0.2)
##  stringi       1.6.2      2021-05-17 [1] CRAN (R 4.0.2)
##  stringr     * 1.4.0      2019-02-10 [1] CRAN (R 4.0.2)
##  survival    * 3.2-11     2021-04-26 [1] CRAN (R 4.0.3)
##  testthat      3.0.4      2021-07-01 [1] CRAN (R 4.0.2)
##  TH.data     * 1.0-10     2019-01-21 [1] CRAN (R 4.0.2)
##  tibble      * 3.1.2      2021-05-16 [1] CRAN (R 4.0.2)
##  tidyr       * 1.1.3      2021-03-03 [1] CRAN (R 4.0.2)
##  tidyselect    1.1.1      2021-04-30 [1] CRAN (R 4.0.2)
##  tidyverse   * 1.3.1      2021-04-15 [1] CRAN (R 4.0.2)
##  usethis       2.0.1      2021-02-10 [1] CRAN (R 4.0.2)
##  utf8          1.2.1      2021-03-12 [1] CRAN (R 4.0.3)
##  vctrs         0.3.8      2021-04-29 [1] CRAN (R 4.0.2)
##  withr         2.4.2      2021-04-18 [1] CRAN (R 4.0.2)
##  xfun          0.24       2021-06-15 [1] CRAN (R 4.0.2)
##  xml2          1.3.2      2020-04-23 [1] CRAN (R 4.0.2)
##  yaml          2.2.1      2020-02-01 [1] CRAN (R 4.0.2)
##  zip           2.2.0      2021-05-31 [1] CRAN (R 4.0.2)
##  zoo           1.8-9      2021-03-09 [1] CRAN (R 4.0.3)
## 
## [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library