Extended Data Figures

ELISA data for maternal serum IL-6 response three hours after PIC treatment at 0, 5, 10, or 20 mg/kg to pregnant dams at E9.5. Units of data are pg/mL.

Samples

##                 mg/kg PIC
## pups survived?   0   5  10  15  20
##           died   7   1  29   1   5
##           n     21   0  81  11  22
##           y    133   8 146   0  28
##          
##           died  n  y
##   CON        2 12 81
##   CON:CON    2  6 27
##   CON:PLX    3  3 24
##   MIA        9 41 98
##   MIA:CON   13 48 47
##   MIA:PLX   14 25 38

Plot MIA vs CON dose response

Fig ED 10e

ANOVA for dose effect

Survive %>%
    group_by(Dose) %>%
    summarise(n = n())
## # A tibble: 4 × 2
##   Dose      n
##   <fct> <int>
## 1 0        81
## 2 5         8
## 3 10       62
## 4 20       28
Survive %>%
    group_by(Dose) %>%
    shapiro_test(log2.IL6)
## # A tibble: 4 × 4
##   Dose  variable statistic        p
##   <fct> <chr>        <dbl>    <dbl>
## 1 0     log2.IL6     0.837 3.60e- 7
## 2 5     log2.IL6     0.791 2.30e- 2
## 3 10    log2.IL6     0.669 1.54e-10
## 4 20    log2.IL6     0.719 5.29e- 6
Survive %>%
    group_by(Dose) %>%
    shapiro_test(IL.6.pg.mL)
## # A tibble: 4 × 4
##   Dose  variable   statistic        p
##   <fct> <chr>          <dbl>    <dbl>
## 1 0     IL.6.pg.mL     0.546 3.56e-13
## 2 5     IL.6.pg.mL     0.856 1.11e- 1
## 3 10    IL.6.pg.mL     0.921 7.11e- 4
## 4 20    IL.6.pg.mL     0.919 3.30e- 2
Survive %>%
    levene_test(IL.6.pg.mL ~ Dose)
## # A tibble: 1 × 4
##     df1   df2 statistic        p
##   <int> <int>     <dbl>    <dbl>
## 1     3   162      38.0 1.23e-18
aov.out <- aov(IL.6.pg.mL ~ Dose, data = Survive)
summary(aov.out)
##              Df    Sum Sq   Mean Sq F value Pr(>F)    
## Dose          3 2.021e+09 673611978   45.17 <2e-16 ***
## Residuals   162 2.416e+09  14912393                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 13 observations deleted due to missingness
summary(glht(aov.out, linfct = mcp(Dose = "Tukey")))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: Tukey Contrasts
## 
## 
## Fit: aov(formula = IL.6.pg.mL ~ Dose, data = Survive)
## 
## Linear Hypotheses:
##              Estimate Std. Error t value Pr(>|t|)    
## 5 - 0 == 0     2425.4     1443.4   1.680  0.32118    
## 10 - 0 == 0    6633.9      678.1   9.783  < 0.001 ***
## 20 - 0 == 0    8153.4      867.1   9.403  < 0.001 ***
## 10 - 5 == 0    4208.5     1450.7   2.901  0.02019 *  
## 20 - 5 == 0    5728.0     1548.1   3.700  0.00141 ** 
## 20 - 10 == 0   1519.5      879.3   1.728  0.29681    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)

ELISA data for maternal serum IL-6 response three hours after PIC treatment along with prenatal PLX treatment. Units of data are pg/mL.

Maternal Response with PLX treatment

Fig ED 7f

ANOVA for Rescue effect

Rescue %>% group_by(Group) %>% summarise(n = n())
## # A tibble: 4 × 2
##   Group       n
##   <fct>   <int>
## 1 CON:CON    27
## 2 CON:PLX    24
## 3 MIA:CON    33
## 4 MIA:PLX    27
Rescue %>% group_by(Group) %>% shapiro_test(log2.IL6)
## # A tibble: 4 × 4
##   Group   variable statistic           p
##   <fct>   <chr>        <dbl>       <dbl>
## 1 CON:CON log2.IL6     0.388 0.000000165
## 2 CON:PLX log2.IL6     0.582 0.00000448 
## 3 MIA:CON log2.IL6     0.977 0.684      
## 4 MIA:PLX log2.IL6     0.939 0.115
Rescue %>% levene_test(log2.IL6 ~ Group)
## # A tibble: 1 × 4
##     df1   df2 statistic     p
##   <int> <int>     <dbl> <dbl>
## 1     3    91      1.21 0.310
aov.out <- aov(log2.IL6 ~ Group, data=Rescue)
summary(aov.out)
##             Df Sum Sq Mean Sq F value Pr(>F)    
## Group        3 2462.9   821.0   230.7 <2e-16 ***
## Residuals   91  323.8     3.6                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 16 observations deleted due to missingness
summary(glht(aov.out, linfct = mcp(Group = c("CON:PLX - CON:CON == 0", "MIA:CON - CON:CON == 0", "MIA:PLX - CON:CON == 0", "MIA:PLX - MIA:CON == 0"))))
## 
##   Simultaneous Tests for General Linear Hypotheses
## 
## Multiple Comparisons of Means: User-defined Contrasts
## 
## 
## Fit: aov(formula = log2.IL6 ~ Group, data = Rescue)
## 
## Linear Hypotheses:
##                        Estimate Std. Error t value Pr(>|t|)    
## CON:PLX - CON:CON == 0   1.0057     0.6380   1.576    0.320    
## MIA:CON - CON:CON == 0  11.1876     0.5632  19.866   <1e-04 ***
## MIA:PLX - CON:CON == 0  10.8833     0.5840  18.634   <1e-04 ***
## MIA:PLX - MIA:CON == 0  -0.3043     0.4895  -0.622    0.891    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
sessionInfo()
## R version 4.2.0 (2022-04-22)
## Platform: x86_64-apple-darwin17.0 (64-bit)
## Running under: macOS Big Sur/Monterey 10.16
## 
## Matrix products: default
## BLAS:   /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.2/Resources/lib/libRlapack.dylib
## 
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
## 
## attached base packages:
## [1] stats     graphics  grDevices utils     datasets  methods   base     
## 
## other attached packages:
##  [1] rstatix_0.7.0   multcomp_1.4-19 TH.data_1.1-1   MASS_7.3-57    
##  [5] survival_3.3-1  mvtnorm_1.1-3   cowplot_1.1.1   forcats_0.5.1  
##  [9] stringr_1.4.0   dplyr_1.0.9     purrr_0.3.4     readr_2.1.2    
## [13] tidyr_1.2.0     tibble_3.1.7    ggplot2_3.3.6   tidyverse_1.3.1
## 
## loaded via a namespace (and not attached):
##  [1] httr_1.4.3       sass_0.4.1       jsonlite_1.8.0   splines_4.2.0   
##  [5] carData_3.0-5    modelr_0.1.8     bslib_0.3.1      assertthat_0.2.1
##  [9] highr_0.9        cellranger_1.1.0 yaml_2.3.5       pillar_1.7.0    
## [13] backports_1.4.1  lattice_0.20-45  glue_1.6.2       digest_0.6.29   
## [17] rvest_1.0.2      colorspace_2.0-3 sandwich_3.0-2   htmltools_0.5.2 
## [21] Matrix_1.4-1     pkgconfig_2.0.3  broom_0.8.0      haven_2.5.0     
## [25] scales_1.2.0     tzdb_0.3.0       generics_0.1.2   farver_2.1.0    
## [29] car_3.1-0        ellipsis_0.3.2   withr_2.5.0      cli_3.3.0       
## [33] magrittr_2.0.3   crayon_1.5.1     readxl_1.4.0     evaluate_0.15   
## [37] fs_1.5.2         fansi_1.0.3      xml2_1.3.3       tools_4.2.0     
## [41] hms_1.1.1        formatR_1.12     lifecycle_1.0.1  munsell_0.5.0   
## [45] reprex_2.0.1     compiler_4.2.0   jquerylib_0.1.4  rlang_1.0.2     
## [49] grid_4.2.0       rstudioapi_0.13  labeling_0.4.2   rmarkdown_2.14  
## [53] gtable_0.3.0     codetools_0.2-18 abind_1.4-5      DBI_1.1.2       
## [57] R6_2.5.1         zoo_1.8-10       lubridate_1.8.0  knitr_1.39      
## [61] fastmap_1.1.0    utf8_1.2.2       stringi_1.7.6    vctrs_0.4.1     
## [65] dbplyr_2.1.1     tidyselect_1.1.2 xfun_0.31